Mijn foto is een datapunt in iemands AI, kan ik een schadevergoeding krijgen?

| AE 13560 | Intellectuele rechten, Ondernemingsvrijheid | 11 reacties

Simon / Pixabay

Via de website “Have I been trained” kun je achterhalen of jouw foto gebruikt is om een AI te trainen, las ik bij Ars Technica. Of nou ja, iets preciezer: of je foto in een van de enorme datasets zit waarmee tegenwoordig alle beetje fatsoenlijke AI’s worden getraind. Want die datasets zijn meestal zonder het ook maar iemand te vragen opgebouwd, dus een beetje pixeljager zou daar wel geld moeten zien. Maar valt er wel wat te eisen?

Wie een machine learning systeem wil trainen, heeft data nodig. Dat geldt voor iedere applicatie, maar voor afbeeldingen is het helemaal een complexe eis: waar haal je die enorme hoeveelheid plaatjes vandaan die nodig is om een adequate brede dekkingsgraad van je AI-toepassing te krijgen? Nou ja, dat pluk je gewoon van internet want als je het maar massaal genoeg verzamelt is het geen auteursrechtinbreuk meer maar innovatie (cf. Google Images).

De state of the art dataset tegenwoordig is LAION-5B,met 5,85 miljard afbeeldingen verreweg de grootste. Bijeengebracht voor researchdoeleinden en experimenteren met zulke enorme sets, aldus de website. “The images are under their copyright”, staat er dan ook. En dan de juridische truc, of nou ja truc, waarmee dat kan: elk item uit de dataset bevat simpelweg alleen de bron-URL van de afbeelding, waarmee de dataset zelf geen inbreuk is.

De dataset is voor haar doel buitengewoon nuttig: bij elk plaatje staan labels zoals wie of wat er te zien is. Met dergelijke metadata kun je systemen trainen die daarmee nieuwe afbeeldingen kunnen maken op een zelfbedachte suggestie (“copyright symbol racing against computer“). Die leren dan op basis van die metadata wat er zoal mogelijk is bij een dergelijke tekst.

Als je nu een dataset maakt door al die afbeeldingen te downloaden en daarmee een AI traint, heb je dan auteursrechten geschonden? De eerste stap – het downloaden – is voor onderzoekers of bedrijven problematisch, omdat in Europa in ieder geval zoiets buiten de thuiskopie-regeling valt. In de VS is dit mogelijk fair use, het staat immers legaal online en het downloaden van een afbeelding is dan fair. 

De volgende stap is het trainen van een machine learning model, waarbij dus allerlei features van die afbeeldingen worden geëxtraheerd en in combinatie met die metadata tot een algoritme wordt omgezet waarmee nieuwe afbeeldingen worden gemaakt. In principe zijn die echt nieuw, maar er zitten soms wel herleidbare stukjes in, zoals in deze foto met herkenbaar Getty watermerk. (Ik weet niet of dit is omdat het stukje met het watermerk paste bij de prompt of omdat het systeem heeft geleerd dat goede foto’s vaak een Getty watermerk dragen, en daaruit concludeerde dat dit erbij hoort.)

Het belangrijkste is, je kunt aan een AI eigenlijk nooit zien of jouw foto’s er specifiek in zitten. Deze tool maakt voor het eerst soort van dat wél mogelijk, althans als de AI-exploitant dus meldt dat hij met LAION-5B werkt (wat op zich een normale melding is, want het is nodig voor benchmarking). En dan kun je dus een claim doen, want gegarandeerd dat er dan bij dat bedrijf ergens een zipfile rondzwerft met een kopie van jouw foto(‘s).

Alleen: wat is je schade? Dit probleem is fundamenteel bij het auteursrecht online, zeker voor mensen die hun werk gratis op internet zetten. Want dan kun je niet eens de gemiste licentiekosten als schade opvoeren. En hier speelt dan ook nog eens dat we niet weten wat je auteursrechtelijk precies doet als je een foto omzet naar een berg datapunten waarmee je een image generator maakt.

De makers van deze tool hebben een iets andere insteek: zij willen dat de AI community vrijwillig overstapt naar een model waarbij toestemming de norm is, juist om de kleine creatieveling te beschermen. En dat is een heel nobel streven, met natuurlijk de kanttekening dat er weinig prikkel is om bij dit soort bedrijven hier op over te stappen.

Arnoud