Vrouw staat vaker voor dichte deur bij gemeenteportaal dan man

| AE 12744 | Innovatie | 51 reacties

Vrijwel standaard hebben alleen mannen bij gemeenten toegang tot belangrijke privégegevens over hun huishoudens, las ik bij de Stentor. Dat blijkt uit onderzoek van de krant. Steeds vaker schuiven gemeentes burgers naar online portalen voor persoonlijke informatie, belastingaanslagen (hond, huis), heffingen (riool, reiniging) en betalingsafspraken. Detail: slechts een persoon per huishouden (de belastingplichtige) krijgt toegang en dat de gemeente bepaalt wie dat is. Die keuze is onder meer gebaseerd op ‘veronderstelde betalingscapaciteit, doelmatigheid en doeltreffendheid van heffing en invordering’. Vandaar: de man.

Oké, dat was flauw. Afgezien van Staphorst (serieus) maakt geen gemeente de bewuste keuze om de man in een huishouden als enige de toegang tot de gezamenlijke belastinginformatie en dergelijke te geven. Er is gekozen voor toegang door één persoon, en daarbij wordt per gemeente een voorkeursvolgorde ingesteld. Voorheen stond “de man” daarbij als een van de criteria, maar dat is al even weg (behalve dus in Staphorst):

In de model-beleidsregels van de VNG voor het aanwijzen van een belastingplichtige is de gemene deler in de volgorde van kiezen nu zo: degene die het meeste eigendom heeft, een natuurlijk persoon boven een niet-natuurlijk persoon en de oudste ingeschrevene op het adres.
U mag nu even alle samenwonenden in uw omgeving langs deze lat leggen: wedden dat bij 80% of meer daarvan de man hier uit komt? In de meeste relaties is het huis of van de man of gezamenlijk en is de man ouder dan de vrouw. Een mooi voorbeeld van onbewuste bias zoals we die ook in de AI kennen: niemand bedóelt dat de man als enige die gegevens moet kunnen beheren, het komt alleen er zo uit (meestal) en omdat niemand heeft nagedacht dat dat onwenselijk is, is er dus geen procedure om dit eerlijker te maken:
Ook al ben je geboren en getogen in deze gemeente, en al 33 jaar getrouwd met dezelfde partner, woon je al die tijd samen in een huis dat gemeenschappelijk eigendom is en betaal je keurig op tijd de rekeningen, als jij de uitverkorene niet bent, is het systeem niet aardig tegen je en meldt het doodleuk: de ingelogde gebruiker is niet bekend.
Wat is dan wel de reden? Het lijkt een IT-keuze te zijn geweest, maar er zit iets juridisch achter. Beschikkingen zoals een aanslag onroerendezaakbelasting moeten op naam gesteld worden, je kunt niet aan “de familie Ten Brink” een aanslag richten want juridisch bestaat niet. Juridisch gezien hebben we op de Terwekselsestraat 1 de burgers Wim en Kornelia Ten Brink wonen, die een gedeelde huishouding hebben. Aan twee personen dezelfde aanslag uitreiken leidt tot gedoe zoals dubbele betalingen (of erger nog: burgers die gaan klagen dat ze twee keer moeten betalen). Daarom is zo veronderstel ik het IT-systeem ontworpen met een keuze welke van de twee burgers aangeslagen wordt.

Ja, ik zou ook denken dat enkel kíjken naar de status van een en ander geen probleem moet zijn. Je weet via de BRP of mensen gehuwd/GP zijn, en dan kun je ze (na inloggen met DigiD) toegang geven tot de informatie waartoe ze gerechtigd zijn. Je zou dan zelfs iets kunnen bouwen waarbij de eerste van het stel die de aanslag ‘pakt’ als enige ermee verder mag, of een algemene keuze inbouwen “wie van u gaat de financiën doen”. Maar dat is complex en vereist vele, vele koppelingen en dubbelchecks. Weinig dingen zo vervelend als dergelijke IT-projecten. Dus ik snap wel dat gemeenten kiezen voor de iets simpeler oplossing van zelf iemand aanwijzen.

Arnoud

Kan dat, een algoritme met een moreel kompas? #legaltechtuesday

| AE 11642 | Innovatie | 61 reacties

Wat doe je als slimme algoritmes verkeerde of gevaarlijke keuzes maken? Die vraag las ik in FD onlangs. Machine learning-onderzoeker Philip Thomas uit Massachusetts heeft een methode ontwikkeld om ‘ongewenst gedrag’ vooraf uit intelligente machines te filteren. Hij noemt dat een Seldonian algoritme, en omdat mijn eerste zelfgekochte boeken de Foundation-reeks van Asimov waren trok dat meteen mijn aandacht. Want ja, het is een probleem als algoritmes racistisch, seksistisch of biasbevestigend zijn. Maar is daar werkelijk een quick fix voor die ook nog eens een mooie science fiction term kan krijgen?

De kern van het onderzoek van Thomas is dat je bepaalde ongewenste uitkomsten vooraf algoritmisch vastlegt, zodat een machine learning algoritme een uitkomst kan toetsen aan dit geprogrammeerde moreel kompas:

Using an experimental dataset, they gave their algorithm mathematical instructions to avoid developing a predictive method that systematically overestimated or underestimated GPAs for one gender. With these instructions, the algorithm identified a better way to predict student GPAs with much less systematic gender bias than existing methods.

Het idee is dus dat als je vooraf kunt zeggen “je mag geen bias hebben op klasse X”, dat je dan eerlijker uitkomsten krijgt. Dit is de omgekeerde benadering van hoe men nu vaak probeert vooringenomenheid te voorkomen, namelijk door klasse X weg te laten uit de dataset. Zeg maar, je wilt voorkomen dat je vrouwen onderselecteert dus je laat het veld ‘geslacht’ weg. Maar dat werkt niet: ML algoritmes zullen andere factoren oppikken (zoals de hobby vrouwentennis of het voornaamwoord haar) en daaruit alsnog genderbias construeren. De Seldonian-benadering is dus dat je zegt “ik wil even veel vrouwen als mannen op gesprek” als HR-adviseur.

(De benadering gaat overigens verder dan alleen discriminatie; je kunt ook bijvoorbeeld zeggen dat de uitkomst niet mag zijn dat een diabetespatiënt een risicovol lage bloedsuikerspiegel kan krijgen. Maar dat terzijde.)

Je zou dus zeggen, opgelost nu dat bias-probleem: maak een kompasregel voor iedere verboden factor uit artikel 9 AVG en verplicht ieder ML systeem daarop te toetsen. Maar dat is ingewikkelder dan je denkt. Bias of vooringenomenheid is niet alleen dat je keihard vrouwen uitsluit of weglaat. Vaak is het veel subtieler; lees het boek Invisible Women als u de details wil weten maar het was voor mij bijvoorbeeld een eye-opener dat als je mannen en vrouwen gelijke toegang tot toiletten wilt geven je 50% meer dames-wc’s nodig hebt. Dáár op komen is niet zo simpel als “je mag geen bias hebben op geslacht”.

Arnoud